Case Studies

  • Sector:
  • Naval Systems
  • Offering:
  • Engineering Services
  • Technology:
  • CEM

Stealth Assessment of Full Scale Airborne and Naval System

Stealth has become a strict design criterion for most of the airborne and naval systems that are being developed at our client organizations. In pursuit of a stealthy design, first level activity is basic shape optimization to minimize mono-static RCS for critical viewing angles. In terms of electric size, these configurations lie in optical region and therefore, methods based on PO and GO for RCS evaluation are best suited. However, results are sensitive to model preparation and choice of various options available to these methods. Being a critical design consideration, our customers desired an engagement by which all nuances of RCS prediction are accounted in a transparent manner.

(a) Sensitivity of PO options on ship RCS (b) Sensitivity of model preparation on UAV RCS

Zeus Numerix has developed a high frequency solver for RCS prediction of full scale configurations based on Physical Optics. Unlike GO method, no geometrical simplification is needed. By incorporating PTD and SBR modules, edge diffraction and multiple bounces are also accounted for. Large surface mesh sizes (~10 million), typical of full scale configuration, are easily handled as solver is optimized for exploiting parallel computing infrastructure. Feasibility has been established on airborne / naval systems that are under development.

The software has been validated against experimental results. The software is now properly packaged and licensed to users.